By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Tiny magnetic discs offer remote brain stimulation without transgenes
    October 18, 2024
    World’s largest study of brain volume reveals genetic links to ADHD, Parkinson’s Disease 
    October 26, 2024
    Hoarding disorder: ‘sensory CBT’ treatment strategy shows promise
    October 18, 2024
    Latest News
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
    New chronic pain therapy retrains the brain to process emotions
    May 10, 2025
    Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments
    May 7, 2025
    A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!
    April 28, 2025
  • Environment
    EnvironmentShow More
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
    Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases, study finds
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Technology > Stretchable robotic fabrics, developed by University of Sheffield scientists
Technology

Stretchable robotic fabrics, developed by University of Sheffield scientists

Admin
Last updated: 2023/08/01 at 9:34 PM
By Admin
Share
5 Min Read
SHARE

Robotic fabrics that can shrink, grow in size and move with precision are becoming a reality, thanks to new research from scientists at the University of Sheffield.

The study, led by Dr Roderich Gross from the University’s Department of Automatic Control and Systems Engineering, has demonstrated for the first time how low-power robotic modules – approximately the size of a 50p coin – can connect together via an elastic mesh and move reliably in the same direction, forming an intelligent robotic fabric.

Published in Nature Communications, the study is the first to show that elastic links enable error-prone robotic modules to march in formation, outperforming modules that are rigidly linked, or not linked at all.

The Sheffield scientists say the research paves the way for the development of ultra-low-power robotic fabrics that navigate spaces inaccessible to humans such as underground water pipes to look for cracks, or that can shrink and be deployed inside the human body to provide medical monitoring or treatment.

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

The prototype fabrics developed in the study are made up of small robotic modules – known as Kilobots – that are low power and have low processing capabilities due to their limited size. Each Kilobot uses vibration motors to move, but cannot precisely control its own direction. When part of the elastic mesh, it communicates with other nearby modules such that the group collectively decides how best to move and behave.

Groups of Kilobots and other small modules usually are not physically linked, but the Sheffield study shows how coupling the modules together in an elastic mesh enables them to move more reliably.

Dr Roderich Gross, Senior Lecturer in Robotics and Computational Intelligence, at the University of Sheffield, said: “Previous studies have looked at intelligent fabrics that sense their surroundings or change appearance. This study looks at intelligent fabrics that move from one place to another, meaning they could deploy themselves without human assistance. In the future, such fabrics could effectively navigate spaces inaccessible to humans, for example, for inspecting the inside of a jet engine.

“In the long term, self-moving, stretchable fabrics may be deployed in medical applications, for example, wrapping around a damaged section of an organ and then monitoring or stimulating it at high spatial resolution.”

In the study, the researchers produced robotic fabrics comprising 49 Kilobot modules. Their experiments show that a single module can’t independently move in a straight line. A fabric of 16 modules can move in a straight line, but only for a short duration. The more modules are part of the fabric, the more successful it moves in a coherent direction.

Further experiments in the study show a fabric moving successfully along a desired path – a circle – and a fabric first changing shape to fit through an imagined smaller space and then restoring its original shape. When the modules are part of a rigid mesh, however, they are unable to move in a coherent direction.

Similar to the way birds move in flocks, the research shows that a large number of individuals can more effectively negotiate where to move, than a smaller number – known as the many-wrongs principle.

However, unlike previous research on the many-wrongs principle, the modules studied by the Sheffield academics do not solely rely on their ability to gather and use information. Rather, the negotiation is aided by the physical bonds within the elastic mesh. This means that the modules rely less on energy-intense perception and thinking to act in a coherent way, which could aid their miniaturisation and the realisation of fabrics comprising thousands of modules.

Source: University of Sheffield

Published on August 2, 2023

TAGGED: robotics
Admin August 1, 2023 August 1, 2023
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

HealthTechnology

Sensor technology uses nature’s blueprint and machinery to monitor metabolism in body

By Admin
HealthTechnology

Counter-Strike players faster at decision-making, study shows

By Admin

Mapping Protein Interactions to Fight Lung Cancer: Coskun Pioneering New Field of Research

By Admin
Technology

MIT engineers design tiny batteries for powering cell-sized robots

By Admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?