By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Researchers design machine learning models to better predict adolescent suicide and self-harm risk
    September 11, 2023
    Scientists identify evolutionary gateway helping pneumonia bacteria become resistant to antibiotics   
    October 3, 2023
    New research indicates some people may be physically unable to use police breathalysers
    October 3, 2023
    Latest News
    Game-Changer in Emergency Medicine: New AI Test Flags Sepsis Hours Before Symptoms Worsen
    June 4, 2025
    Perfumes and lotions disrupt how body protects itself from indoor air pollutants
    June 3, 2025
    Medical Milestone: Surgeons Perform First-Ever Human Bladder Transplant
    May 20, 2025
    A Downside of Taurine: It Drives Leukemia Growth
    May 19, 2025
  • Environment
    EnvironmentShow More
    Perfumes and lotions disrupt how body protects itself from indoor air pollutants
    By Admin
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Latest News > Cells ‘flock’ to heal wounds
Latest News

Cells ‘flock’ to heal wounds

admin
Last updated: 2013/01/24 at 3:29 PM
By admin
Share
7 Min Read
SHARE

 

Like flocks of birds, cells coordinate their motions as they race to cover and ultimately heal wounds to the skin. How that happens is a little less of a mystery today.

 


 

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

Researchers once thought only the cells at the edge of a growing patch of wounded skin were actively moving while dividing cells passively filled in the middle. But that’s only part of the picture. Rice University physicist Herbert Levine and his colleagues have discovered that the process works much more efficiently if highly activated cells in every part of the patch exert force as they pull their neighbors along.

 

There’s a need to understand how cells cooperate to protect the site of a wound in the hours and days after injury, said Levine, who has introduced the first iteration of a computer model to analyze the two-dimensional physics of epithelial sheets. He hopes it will give new insight into a process with long-term implications not only for healing but also for understanding cancer, a prime motivator in his research since joining Rice under a grant from the Cancer Research and Prevention Institute of Texas.

 

A paper on the research by Levine, based at Rice University’s BioScience Research Collaborative, and colleagues at the University of California at San Diego and in Germany and France appears today in the Proceedings of the National Academy of Science.

 

Levine and his colleagues create computer models of processes seen by experimentalists to flesh out the rules that govern biological systems. “Here, we’re combining experimental observations from single cells with general notions from the physics literature to create an integrated way of thinking about this multicellular system,” he said.

 

The new models were prompted by a recent Harvard study showing “that even in the middle of a sheet, cells were dynamically creating heads and tails and were actively moving rather than being passively carried along,” Levine said. “This data convinced us that we needed a different way to start to think about the problem.”

 

The body marshals an astounding array of forces to heal wounds, Levine said. Many have to do with cell biology, the internal and external signals that tell a cell when to move, when to stop, when to split and when to die. His team’s intent was to focus first on the cell’s physical interactions with its neighbors and study what happened if all those complicating factors are eliminated from the simulations.

 

“We try to unravel what is physics and what is biology,” Levine said. “We want to know which parts of the phenomenon don’t require sophisticated signaling networks.”

 

In the physics approach to cell motility, he said, “the first thing to do is see how far we can get if we assume that all the cells are following the same rules. Then the only thing that’s creating the dynamics of the system is that they’re interacting with each other. This is the type of problem that physicists have studied before, usually in nonbiological contexts.”

 

In the Harvard experiment, he said, “They had taken a millimeter-sized tissue that was spreading and showed it wasn’t just cells on the end that were pulling on the tissue while the others were spectators.” But that work didn’t explain how cells in the center of the tissue knew the direction of the edge.

 

Levine’s team looked to the skies for inspiration. “Birds look around and decide which way all their neighbors are flying,” Levine said. “The idea that they would move as independent birds but also coordinate is where the idea of flocking came from. This way of thinking hadn’t been applied to epithelial tissue motility in wound healing.”

 

What cells “see” are their sticky neighbors, which pull and tug them as they move on lamellipodia, thin sheets that serve as “feet” powered by actin filaments that act something like the treads on a tank. The overlapping lamellipodia of adjacent cells influence each other. “The cells have to figure out which way to go based on competing tendencies: their own tendency to push on the ground and propel themselves forward, and the tendency of their neighbors to try to pull them in various directions,” Levine said. “Our basic notion is that as time goes on, these tendencies become correlated as the cell ‘tries’ to accommodate its conflicting inputs.”

 

The Harvard experimentalists saw that loosely packed cells in the middle of a growing colony tend to swirl in a disorganized manner, and the simulations confirmed this. These swirls are analogous to what is seen in other examples of flocking. But when a wound is introduced, the swirls disappear and cells begin to match direction and velocity and pull toward a common goal. The ones on the edge immediately know which way to go, and everyone else learns from their example. Surprisingly, Levine said, “stickier” cells tend to push forward unevenly, with finger-like protrusions at the leading edge, much like what experimentalists often see.

 

The simulation model has a long way to go, Levine said. “It’s rough around the edges. Biologists who read this will immediately say, ‘You’ve left out all sorts of interesting things we know are happening.’

 

“Yes, there will be experiments for which this approach will not be sufficient,” he said. “It will teach us that in those cases, biology has to exert a more specific role in creating the structures and the motion.”

 

Levine hopes to match the models to current work by experimentalists on motility in cells related to the metastatic spread of breast cancer. “We’re a long way from saying anything about this problem,” he said. “But that’s my overall agenda — to push my research to where it can make contact with the cancer community.”

 

 

Source: Rice University

 

Published on 24th January 2013

 


admin January 24, 2013 January 24, 2013
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Latest News

Researchers develop new robot medics for places doctors are unable to be

By Admin
Latest News

Even thinking about marriage gets young people to straighten up

By admin
Latest News

Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions

By admin
Latest News

UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?