By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    World’s largest study of brain volume reveals genetic links to ADHD, Parkinson’s Disease 
    October 26, 2024
    Chemicals produced by fires show potential to raise cancer risk
    November 11, 2024
    Rising rates of head and neck cancers in England
    October 26, 2024
    Latest News
    Game-Changer in Emergency Medicine: New AI Test Flags Sepsis Hours Before Symptoms Worsen
    June 4, 2025
    Perfumes and lotions disrupt how body protects itself from indoor air pollutants
    June 3, 2025
    Medical Milestone: Surgeons Perform First-Ever Human Bladder Transplant
    May 20, 2025
    A Downside of Taurine: It Drives Leukemia Growth
    May 19, 2025
  • Environment
    EnvironmentShow More
    Perfumes and lotions disrupt how body protects itself from indoor air pollutants
    By Admin
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Latest News > Ring around the hurricanes: Satellites can predict storm intensity
Latest News

Ring around the hurricanes: Satellites can predict storm intensity

admin
Last updated: 2011/05/21 at 3:29 PM
By admin
Share
7 Min Read
SHARE

 

Atmospheric sciences professor Stephen Nesbitt, left, and graduate student Daniel Harnos analyzed passive microwave satellite data to identify telltale structural rings in tropical storms that are about to intensify into hurricanes.(Credit: Photo by L. Brian Stauffer)

Coastal residents and oil-rig workers may soon have longer warning when a storm headed in their direction is becoming a hurricane, thanks to a University of Illinois study demonstrating how to use existing satellites to monitor tropical storm dynamics and predict sudden surges in strength.

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

“It’s a really critical piece of information that’s really going to help society in coastal areas, not only in the U.S., but also globally,” said atmospheric sciences professor Stephen Nesbitt. Nesbitt and graduate student Daniel Harnos published their findings in the journal Geophysical Research Letters.

Meteorologists have seen large advances in forecasting technology to track the potential path of tropical storms and hurricanes, but they’ve had little success in predicting storm intensity. One of the biggest forecast problems facing the tropical meteorology community is determining rapid intensification, when storms suddenly transform into much stronger cyclones or hurricanes.

“Rapid intensification means a moderate-strength tropical storm, something that may affect a region but not have a severe impact, blowing up in less than 24 hours to a category 2 or 3 hurricane,” Harnos said. “This big, strong storm appears that wasn’t anticipated, and the effects are going to be very negative. If you don’t have the evacuations in place, people can’t prepare for something of the magnitude that’s going to come ashore.”
For example, Hurricane Charlie, which hit southern Florida in 2004, was initially forecast as a category 1 storm. However, when it made landfall less than 24 hours later, it had strengthened to a category 4, causing major damage.

Rapid intensification is so hard to predict in part because it’s driven by internal processes within the storm system, rather than the better-predicted, large-scale winds that determine the direction of the storms. The satellite imagery most commonly used for meteorology only looks at the clouds at the top of the storms, giving little insight as to what’s going on inside the system.

Harnos and Nesbitt focused their study on passive microwave satellite imagery. Such satellites are used commonly for estimating precipitation, but the Illinois researchers focused on using these sensors to systematically observe hurricane structure and intensity changes. Their study was the first to use objective techniques to investigate a convective ring structure that has been observed in tropical cyclones.

“What makes it ideal for what we are doing is that it’s transparent to clouds. It senses the amount of ice within the clouds, which tells us the strength of convection or the overturn of the atmosphere within the hurricane,” Nesbitt said. “It’s somewhat like trying to diagnose somebody with a broken arm by taking a picture of the arm, versus being able to X-ray it.”

The researchers scoured data from passive microwave satellites from 1987 to 2008 to see how hurricanes behaved in the 24 hours before a storm underwent rapid intensification. Such a big-picture approach, in contrast to the case studies atmospheric scientists often perform, revealed clear patterns in storm dynamics. They found that, consistently, low-shear storm systems formed a symmetrical ring of thunderstorms around the center of the system about six hours before intensification began. As the system strengthened into a hurricane, the thunderstorms deepened and the ring became even more well-defined.

The study also looked at high-shear storms, a less common phenomenon involving atmospheric winds hanging with height.
Such storms showed a different structure when intensifying: They form a large, bull’s-eye thunderstorm in the center of the system, rather than a ring around the center.

“Now we have an observational tool that uses existing data that can set off a red flag for forecasters, so that when they see this convective ring feature, there’s a high probability that a storm may undergo rapid intensification,” Nesbitt said. “This is really the first way that we can do this in real time rather than guessing with models or statistical predictions.”

Since passive microwave satellites orbit every three to six hours, meteorologists can use them to track tropical storms and watch for the telltale rings to give forecasters about a 30-hour window before a storm hits its maximum strength.

Next, the researchers hope to even further increase their forecasting ability by modeling the internal dynamics of the storm systems as they intensify to pinpoint the causes of the structural changes they observed and find out what drives the intensification process.

“The satellite gives up as snapshot of what’s taking place,” Harnos said. “We know what’s going on, but not how those changes are occurring to end up in the pattern that we’re seeing. So what we’re working on now is some computer modeling of hurricanes, both real storms and idealized storms, to see dynamically, structurally, what’s taking place and what changes are occurring to produce these patterns that we see in the satellite data.”

The NASA Hurricane Science Research Program supported this work.

Source: University of Illinois at Urbana-Champaign

Published May 21st 2011

admin May 21, 2011 May 21, 2011
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Latest News

Researchers develop new robot medics for places doctors are unable to be

By Admin
Latest News

Even thinking about marriage gets young people to straighten up

By admin
Latest News

Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions

By admin
Latest News

UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?