By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Tiny magnetic discs offer remote brain stimulation without transgenes
    October 18, 2024
    World’s largest study of brain volume reveals genetic links to ADHD, Parkinson’s Disease 
    October 26, 2024
    Hoarding disorder: ‘sensory CBT’ treatment strategy shows promise
    October 18, 2024
    Latest News
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
    New chronic pain therapy retrains the brain to process emotions
    May 10, 2025
    Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments
    May 7, 2025
    A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!
    April 28, 2025
  • Environment
    EnvironmentShow More
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
    Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases, study finds
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Health > How the ‘home’ environment influences microbial interactions
Health

How the ‘home’ environment influences microbial interactions

Admin
Last updated: 2024/06/03 at 6:30 PM
By Admin
Share
6 Min Read
SHARE

Study shows low-nutrient conditions alter viral infection of cells

This much we know: When viruses infect bacteria – a common occurrence in oceans, soils, even human guts – the interaction results in creation of entirely new organisms called “virocells.” But scientists are still learning about how this merger of microbes affects, and is affected by, their surroundings.

Four years ago, scientists made a surprising lab discovery about ocean bacteria that were infected by two different viruses: The infections resulted in two very different virocells whose functions were governed wholly by viral needs rather than their bacterial origins.

“So they’re operating differently even though it was the same parent cell. You had the same entity become two different entities from two different viruses,” said Cristina Howard-Varona, a research scientist in microbiology at The Ohio State University and the first author of the study. “This is fascinating, because viral infections are happening all the time.”

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

The finding was made under experimental conditions considered best for observing a previously unknown phenomenon – which included high levels of the nutrient phosphate in the water. Howard-Varona and colleagues have repeated the work in a new study under low-phosphate conditions more similar to the natural world, where pockets of the ocean are starved of nutrients.

They found that these real-world conditions made a huge difference in how viral infection affected the host bacteria – so much so that the two types of infected cells are represented in the paper as a Venn diagram to show the functions and characteristics they share alone or in combination as a result of their low-nutrient environment.

The study was published recently in The ISME Journal.

The point of the new findings is not only about how the two virocells behave individually in a low-phosphate area of the ocean, but also about how much impact the environment has on the routine event of viruses infecting bacteria.

“When you deplete only one nutrient, it has a drastic impact – it changes the picture of infection even though it’s the same cell and the same viruses as in the earlier study,” Howard-Varona said. “So what would happen if we starved it even more or we deplete a different nutrient? This tells us it’s going to be very important to study cells and virocells under nutrient conditions that more closely resemble what they encounter in nature.”

The research has potential to improve large-scale modeling of ocean microbial systems, which to date tends to lack the virocell component, said Matthew Sullivan, co-senior author of both studies and a professor of microbiology at Ohio State.

“If we are to predict how organisms contribute to ocean geochemistry, we need to know how cell populations interact, how they obtain nutrients from the environment and how that changes the composition of organic matter that makes the cells – and how everything together contributes to climate change and to the oceans’ response to climate change,” said Sullivan, also a professor of civil, environmental and geodetic engineering and founding director of Ohio State’s Center of Microbiome Science.

“The same is true of modeling microbes in soils, which don’t have a nutrient-rich environment, either, and where we know very little about virocells and how they contribute to the health of roots and crops.”

In the new study, researchers found that the two infecting viruses did wield plenty of control over functions that dominated the two resulting virocells. The viruses, called phages, were selected for their very different qualities: One is very genomically similar to the host bacteria, so it focused on recycling existing resources, and the other, less similar phage had to work harder to generate resources. In both cases, the aim is to access energy and maximize making viral copies and eventually killing the host.

“But those differences were narrowed in the low-phosphate environment, so they’re less important – suggesting the environment may have a stronger effect than the infecting viruses on how virocells behave,” Howard-Varona said.

And then there were activities common to both virocells in response to the starvation: activating a cell-wide stress response, obtaining energy from metabolizing fats rather than carbs, and reducing the amount of organic matter they consume from the environment.

“Every cell in the world needs phosphate to make DNA and energy, and so without it, there’s no life, no function, no metabolism,” Howard-Varona said. “And what we’ve shown is that in these conditions, virocells have commonalities. They sense the nutrient limitation and behave more similarly than they did when they were growing in a nutrient-rich environment.

“The environment is very important to viral infections – and so you can imagine this is true for every environment.”

The researchers will be applying much of what they’ve learned from the marine environment to studies of soil virocells.

Source: Ohio State University

Published on June 3, 2024

TAGGED: microbes, Microbiology, virocells
Admin June 3, 2024 June 3, 2024
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

How do therapy dogs help domestic abuse survivors receiving support services?

By Admin

New chronic pain therapy retrains the brain to process emotions

By Admin

Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments

By Admin

A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!

By Admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?