By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Researchers design machine learning models to better predict adolescent suicide and self-harm risk
    September 11, 2023
    Scientists identify evolutionary gateway helping pneumonia bacteria become resistant to antibiotics   
    October 3, 2023
    New research indicates some people may be physically unable to use police breathalysers
    October 3, 2023
    Latest News
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
    New chronic pain therapy retrains the brain to process emotions
    May 10, 2025
    Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments
    May 7, 2025
    A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!
    April 28, 2025
  • Environment
    EnvironmentShow More
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
    Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases, study finds
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Latest News > Counting fish teeth reveals DNA changes behind rapid evolution
Latest News

Counting fish teeth reveals DNA changes behind rapid evolution

admin
Last updated: 2014/09/22 at 3:29 PM
By admin
Share
7 Min Read
SHARE

Sticklebacks, the roaches of the fish world, are the ideal animal in which to study the genes that control body shape. They’ve moved from the ocean into tens of thousands of freshwater streams and lakes around the world, each time changing their skeleton to adapt to the new environment.


Breeding studies between marine and freshwater populations of sticklebacks now have turned up one of the genes that controls tooth number, plus evidence that a simple change in that gene’s regulation in a freshwater population is associated with a near doubling in the number of teeth. University of California, Berkeley, scientists say that the corresponding gene in humans may turn out to be involved in tooth, jaw and bone formation.

 

“This study suggests that the gene, called Bmp6, plays a key role in regeneration of vertebrate organs,” said lead researcher Craig Miller, UC Berkeley assistant professor of molecular and cell biology. “Understanding tooth regeneration could lead to a way to replace teeth in humans, for example.”

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

 

“It’s also clear that there is some biological connection between tooth number and cleft palate, because the same regions of the genome control both,” he added. “Understanding which genes control the number of teeth is important for understanding what causes malformations, such as a cleft palate.”

 

Miller and his UC Berkeley and Stanford University colleagues reported their findings online last week in advance of publication in the journal Proceedings of the National Academy of Sciences.

 

The finding has implications, too, for how evolution generates new body shapes. Biologists have proposed that this results primarily from changes in the regulation of a functional gene, not mutations in the gene itself. To date, this has proved true for loss of traits in fish: armor plates, pelvic fins and pigment.

 

“This is one of the first cases where we find that the rules found for traits lost apply as well to traits gained,” said Miller.

 

Rapid adaptation to fresh water

 

Like salmon, the two-inch long, threespine stickleback (Gasterosteus aculeatus) is anadromous: it lives in oceans, but swims up freshwater streams to breed. Since the end of the last Ice Age 12,000 years ago, many sticklebacks have colonized lakes and creeks, where their bodies quickly adapted to the new environment: they developed more teeth and stronger jaws, presumably to crack open larger prey found in freshwater, and they lost their armor, perhaps because of fewer predators. In one Alaskan Lake, these changes took a mere 10 years.

 

 

Miller, along with his postdoctoral advisor, coauthor David Kingsley of Stanford University, and scientists at the Broad Institute at MIT, sequenced the genomes of sticklebacks from 21 populations in 2012. They established that all sticklebacks seem to have the same genes, but that rapid change in regulatory DNA allowed them to alter expression of their genes in order to adapt quickly to changing environments.

 

Because the ancestral saltwater populations still can breed with freshwater populations to produce fertile offspring, researchers can crossbreed fish from different populations to track down the genes and regulatory regions responsible for these body changes. In 2007, shortly after the stickleback genome was sequenced, Miller used crossbreeding to track down genes involved in pigmentation in both fish and humans. At UC Berkeley, he maintains 171 fish tanks with sticklebacks from 11 populations around the world, ranging from Japan and Canada to the San Francisco Bay Area, where 58 of 66 streams are populated with threespine sticklebacks.

 

The new study pinpoints one likely gene, bone morphogenetic protein 6 (Bmp6), responsible for tooth number. While the gene seems to be identical in all sticklebacks, regulatory pieces of DNA sitting next to Bmp6 are different in marine versus freshwater fish, suggesting that altered regulation is responsible for the extra teeth. The Bmp6 gene is expressed at higher levels in freshwater fish than in ocean fish.

 

Goosing up genes

 

“We think goosing up the Bmp6 signal doubles the number of teeth,” Miller said. “This fairly simple genetic basis for gaining something new, such as teeth, is surprising. A very tiny change in the regulator has a large effect.”

 

The boost in Bmp6 activity occurs late in the development of the fish larva, when it’s already nearly an inch long and halfway to adulthood. Before that time, freshwater and ocean fish have the same number of teeth. The number of teeth in freshwater sticklebacks continues to increase throughout their lifetime as the area of the tooth plate and the density of teeth both increase.

 

 

 

“We found that freshwater-derived sticklebacks keep making teeth constantly and never seem to slow down, whereas the ancestral form stops making more teeth,” he said. “While biologists have known for a long time that sharks and some fish continually replace their teeth, almost nothing was known until now about the genetic basis of evolved changes in tooth patterning.”

 

Miller and his colleagues located the Bmp6 gene by crossing marine sticklebacks from Alaska with freshwater sticklebacks from Paxton Lake, Canada. The Canadian fish have about twice the number of teeth as the Alaskan ocean fish. He had earlier identified seven regions of the fish genome involved in controlling tooth number. The new study narrowed down one of these to a stretch of DNA on chromosome 21 containing the Bmp6 gene.

 

 

 

 

Source: University of California – Berkeley.

 

 

Published on  22nd september  2014

admin September 22, 2014 September 22, 2014
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Latest News

Researchers develop new robot medics for places doctors are unable to be

By Admin
Latest News

Even thinking about marriage gets young people to straighten up

By admin
Latest News

Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions

By admin
Latest News

UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?