By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Researchers design machine learning models to better predict adolescent suicide and self-harm risk
    September 11, 2023
    Scientists identify evolutionary gateway helping pneumonia bacteria become resistant to antibiotics   
    October 3, 2023
    New research indicates some people may be physically unable to use police breathalysers
    October 3, 2023
    Latest News
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
    New chronic pain therapy retrains the brain to process emotions
    May 10, 2025
    Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments
    May 7, 2025
    A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!
    April 28, 2025
  • Environment
    EnvironmentShow More
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
    Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases, study finds
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Latest News > Increased carbon dioxide has altered photosynthesis of plants over the 20th century
Latest News

Increased carbon dioxide has altered photosynthesis of plants over the 20th century

admin
Last updated: 2016/04/21 at 3:29 PM
By admin
Share
5 Min Read
SHARE

Researchers at Umeå University and the Swedish University of Agricultural Sciences have discovered that increasing levels of carbon dioxide in the atmosphere have shifted photosynthetic metabolism in plants over the 20th century. This is the first study worldwide that deduces biochemical regulation of plant metabolism from historical specimens. The findings are now published in the leading journal PNAS and will have an impact on new models of future carbon dioxide concentration in the atmosphere.


In most plants, the uptake of CO2 through photosynthesis is reduced by a side reaction called photorespiration. The research group has now found that the CO2 increase in the atmosphere over the 20th century has shifted the balance between photosynthesis and photorespiration toward photosynthesis. This shift has so far contributed to the global vegetation’s ability to dampen climate change by absorbing a third of human-caused CO2 emissions. The photorespiration pathway is known to increase with temperature, which means that temperature and CO2 effects predictably oppose one another. This implies that the CO2 -driven metabolic shift will be counteracted by future temperature increases.

Vegetation’s ability to capture CO2 from the atmosphere through photosynthesis is not only a decisive factor for the global CO2 balance but also in predicting future climate change and crop productivity. By monitoring plant metabolism retrospectively using historic plant samples, this research group has quantified how much increased atmospheric CO2 levels during the 20th century have contributed to plants’ ability to capture the greenhouse gas carbon dioxide.

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

“Until recently, studying how plants respond to increases in CO2 on decadal to centennial time scales has relied on simulations based on short-term experiments, because methods to detect long-term metabolic changes were not available. By reconstructing past metabolic shifts in response to environmental changes, we lay the foundation for better modelling of future plant performance,” says Jürgen Schleucher, professor at the Department of Medical Biochemistry and Biophysics at Umeå University, who led the study.

“We now have data showing the effect of CO2 on the level of metabolic fluxes in plants over decades back in time,” says postdoc Ina Ehlers, who performed most measurements for this first empirical study on shifts in plant metabolism driven by long-term environmental changes. The study was funded by the Swedish Research Council and equipment provided by the Kempe Foundation and the Knut and Alice Wallenberg foundation.

The researchers from Umeå University and the Swedish University of Agricultural Sciences, led by Jürgen Schleucher, observed shifted photosynthetic metabolism in both wild plant species as well as crops.

“We suspected that photorespiration was stealing away a portion of photosynthesis. Now we know it was leaving fingerprints,” says John Marshall, professor of Tree Physiology and co-author of the study. Due to the fundamental biochemical origin of the observed shift, the same change should have occurred in most global vegetation.

The study analysed several different C3 plants, i.e. plants which collectively account for the majority of global photosynthesis, and of calories for human nutrition. In historic beet sugar samples that grew at different times between 1890 and 2012, the researchers observed a change in metabolic fluxes, which can fully be explained as CO2-driven shift, without a noticeable influence of cultivars, changes in agricultural practices or by plant breeding.

“The peat moss species that showed the same metabolic shift occurs widely over the northern hemisphere and is highly important for the CO2 capture of boreal peat soils,” adds Mats Nilsson, professor in Biogeochemistry and collaborator in the study.

The researchers developed a new methodology, using NMR spectroscopy at the Umeå University’s core facility “NMR for Life”, to compare the metabolism in century-old herbarium specimens with new plants. By studying intramolecular isotope patterns of glucose in plants formed during photosynthesis, the researchers discovered that changes in isotope patterns are linked to changes in metabolic fluxes depending on the different CO2 levels. The method was first calibrated in greenhouse experiments and then used to compare historic and modern plant samples. The researchers were thus able to track changes in metabolism over centuries.

Source: Umeå University.

Published on 8th December 2015

admin April 21, 2016 April 21, 2016
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Latest News

Researchers develop new robot medics for places doctors are unable to be

By Admin
Latest News

Even thinking about marriage gets young people to straighten up

By admin
Latest News

Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions

By admin
Latest News

UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?