By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    World’s largest study of brain volume reveals genetic links to ADHD, Parkinson’s Disease 
    October 26, 2024
    Chemicals produced by fires show potential to raise cancer risk
    November 11, 2024
    Rising rates of head and neck cancers in England
    October 26, 2024
    Latest News
    Perfumes and lotions disrupt how body protects itself from indoor air pollutants
    June 3, 2025
    Medical Milestone: Surgeons Perform First-Ever Human Bladder Transplant
    May 20, 2025
    A Downside of Taurine: It Drives Leukemia Growth
    May 19, 2025
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
  • Environment
    EnvironmentShow More
    Perfumes and lotions disrupt how body protects itself from indoor air pollutants
    By Admin
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Latest News > RESEARCH SHOWS CHEMICAL AND ECONOMIC FEASIBILITY FOR CAPTURING CARBON DIOXIDE DIRECTLY FROM AIR
Latest News

RESEARCH SHOWS CHEMICAL AND ECONOMIC FEASIBILITY FOR CAPTURING CARBON DIOXIDE DIRECTLY FROM AIR

admin
Last updated: 2015/07/25 at 3:29 PM
By admin
Share
8 Min Read
SHARE

Testing aminosilicate samples

 


 

 

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

Stephanie Didas, a Georgia Tech Ph.D. candidate, loads an aminosilica sample into a custom-built volumetric adsorption system for measuring adsorption isotherms of different carbon dioxide capture materials. (Credit: Georgia Institute of Technology Photo : Gary Meek)


 

 

With a series of papers published in chemistry and chemical engineering journals, researchers from the Georgia Institute of Technology have advanced the case for extracting carbon dioxide directly from the air using newly-developed adsorbent materials.

 

The technique might initially be used to supply carbon dioxide for such industrial applications as fuel production from algae or enhanced oil recovery. But the method could later be used to supplement the capture of CO2 from power plant flue gases as part of efforts to reduce concentrations of the atmospheric warming chemical.

 

In a detailed economic feasibility study, the researchers projected that a CO2 removal unit the size of an ocean shipping container could extract approximately a thousand tons of the gas per year with operating costs of approximately $100 per ton. The researchers also reported on advances in adsorbent materials for selectively capturing carbon dioxide.

 

“Even if we removed CO2 from all the flue gas, we’d still only get a portion of the carbon dioxide emitted each year,” noted David Sholl, a professor in Georgia Tech’s School of Chemical & Biomolecular Engineering. “If we want to make deep cuts in emissions, we’ll have to do more – and air capture is one option for doing that.”

 

The Georgia Tech research into air capture techniques was funded by the U.S. Department of Energy. Papers describing the economic analysis and new adsorbent materials were published in the journals ChemSusChem, Industrial and Engineering Chemistry Research, the Journal of Physical Chemistry Letters and the Journal of the American Chemical Society.

 

Carbon dioxide from large sources such as coal-burning power plants or chemical facilities account for less than half the worldwide emissions of the gas, noted Christopher Jones, also a professor in the Georgia Tech School of Chemical & Biomolecular Engineering. Much of the remaining emissions come from mobile sources such as buses, cars, planes and ships, where capture would be much more costly per ton.

 

Jones is collaborating with a startup company – Global Thermostat – to establish a pilot plant to demonstrate the direct air capture technique. The technology for capturing carbon dioxide from the air would be similar to that required for removing the gas from smokestack emissions, though CO2 concentrations in flue gases are dramatically higher than those in the atmosphere.

 

Flue gases contain about 15 percent carbon dioxide, while CO2 is found in the atmosphere at less than 400 parts per million. That’s a factor of 375, notes Sholl, who said the difference in capture efficiency could be partially made up by eliminating the need to transport CO2 removed from flue gas to sequestration locations.

 

“Because the atmosphere is generally consistent, you could operate the capture equipment wherever you had a sequestration site,” he said. “I don’t think air capture will ever produce carbon dioxide as cheaply as capturing it from flue gas. But on the other hand, it doesn’t seem to be wildly more expensive, either.”

 

Based on his work with Global Thermostat, Jones believes that the costs of an optimized process will prove to be even lower than the estimates of Sholl’s team. “Sholl’s paper is important because it shows that direct capture of CO2 from the air can be up to ten times less expensive than had been estimated by others,” he said. “Process improvements based on their initial modeling study could bring costs down even further.”

 

In its economic analysis, Sholl’s team considered all of the energy that would have to be put into the capture process. The cost estimates did not include the capital cost of establishing the capture facilities because the technology is still too new for reliable projections.

 

The batch extraction process modeled by the Georgia Tech team involves blowing air through a ceramic honeycomb structure coated with dry amino-modified silica material to capture the CO2, then flowing steam through the structure to release the gas. The technique could produce carbon dioxide that is roughly 90 percent pure.

 

“The technical challenges are similar to those of flue gas capture: demonstration at scale, demonstration of long-term adsorbent stability and demonstration of process feasibility and stability,” Jones said. “Increased funding for air capture work is needed, because most of the funding invested in carbon capture over the past decade has been directed at flue gas capture.”

 

Sholl and Jones have also been contributing to work on flue gas treatment, conducting research into adsorbent materials, including theoretical and experimental research into adsorbent alternatives such as metal-organic framework (MOF) materials.

 

Among their recent papers on direct capture of CO2 from the air are:

 

A Journal of the American Chemical Society paper that described the role of zirconium in producing more efficient amine-based adsorbents. “Past work has focused on maximizing the amount of CO2 captured per gram of adsorbent by adding ever-increasing amounts of amines,” Jones explained. “We are the first to show that an alternate strategy is to change the oxide support that the amines lay on, and for a fixed amount of amine, each amine works more efficiently.”

A paper published in ChemSusChem describing the role played by primary, secondary and tertiary amines in capturing carbon dioxide from ultra-dilute gases like air. “We showed conclusively that primary amines are responsible for CO2 capture from the air, that secondary amines work to some degree, and that tertiary amines don’t absorb from air in any appreciable amount,” Jones said.

A paper in Industrial & Engineering Chemistry Research that describes detailed cost estimates for the air capture process.

Jones believes air capture should be among the options developed to address global warming produced by increasing levels of carbon dioxide in the atmosphere.

 

“Initial demonstrations of the air capture process will probably be targeted for applications that can use the carbon dioxide for commercial purposes,” Jones said. “As the technology matures, we envision implementing CO2 capture from the air as a climate stabilization strategy, in parallel with CO2 capture from flue gas and enhanced utilization of alternative energies.”

Source: Georgia Institute of Technology

 

Published on 26th July  2012

 


admin July 25, 2015 July 25, 2015
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Latest News

Researchers develop new robot medics for places doctors are unable to be

By Admin
Latest News

Even thinking about marriage gets young people to straighten up

By admin
Latest News

Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions

By admin
Latest News

UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?