By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Researchers design machine learning models to better predict adolescent suicide and self-harm risk
    September 11, 2023
    Scientists identify evolutionary gateway helping pneumonia bacteria become resistant to antibiotics   
    October 3, 2023
    New research indicates some people may be physically unable to use police breathalysers
    October 3, 2023
    Latest News
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
    New chronic pain therapy retrains the brain to process emotions
    May 10, 2025
    Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments
    May 7, 2025
    A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!
    April 28, 2025
  • Environment
    EnvironmentShow More
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
    Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases, study finds
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Uncategorized > Enhance! Deep learning tool boosts X-ray imaging resolution and hydrogen fuel cell performance
Uncategorized

Enhance! Deep learning tool boosts X-ray imaging resolution and hydrogen fuel cell performance

admin
Last updated: 2023/02/24 at 7:13 PM
By admin
Share
8 Min Read
SHARE

X-ray scan of a hydrogen fuel cell

 

 

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

3D X-ray scan of a hydrogen fuel cell, showing carbon paper weaves, membrane and catalysts (in black). Credit: Dr. Quentin Meyer

 

 

Researchers from UNSW Sydney have developed an algorithm which produces high-resolution modelled images from lower-resolution micro X-ray computerised tomography (CT).

—————————————————————————————————————————

Find jobs in R & D, Medicine, engineering and a wide variety of scientific fields and others in our jobs page.

——————————————————————————————————————————

The new process, detailed in a paper published in Nature Communications, has been tested on individual hydrogen fuel cells to accurately model the interior in precise detail and potentially improve the efficiency of them.

But the researchers say it could also be used in future on human X-rays to give medical professionals a better understanding of tiny cellular structures inside the body, which could allow for better and faster diagnosis of a wide range of diseases.

The team, featuring Professor Ryan Armstrong, Professor Peyman Mostaghimi, Dr Ying Da Wang, and Kunning Tang from the School of Mineral and Energy Resources Engineering and Prof Chuan Zhao and Dr Quentin Meyer from the School of Chemistry, developed the algorithm to improve the understanding of what is happening inside a Proton Exchange Membrane Fuel Cell (PEMFC).

PEMFCs use hydrogen fuel to generate electricity and are a quiet, and clean energy source that can power homes, vehicles, and industries.

These fuel cells convert the hydrogen, via an electrochemical process, into electricity with the only by-product of the reaction being pure water.

However, the PEMFCs can become inefficient if the water cannot properly flow out of the cell and subsequently ‘floods’ the system. Until now, it has been very hard for engineers to understand the precise ways in which water drains, or indeed pools, inside the fuel cells due to their very small size and very complex structures.

Improved resolution

The solution created by the UNSW researchers allows for deep learning to create a detailed 3D model by utilising a lower-resolution X-ray image of the cell, while extrapolating data from an accompanying high-res scan of a small sub-section of it.

In more basic terms, it’s the equivalent of taking a blurry aerial photo of an entire town from an aeroplane, along with a very detailed photo of just a few streets, and then being able to accurately predict the lay-out of every road in the entire area.

“One of the reasons this research is so novel is that we are pushing the limit of what can be produced from imaging,” says Professor Armstrong.

“It is very typical that when you use a piece of hardware, whether it’s a microscope or a CT scanner, the resolution of an image gets worse the more you zoom out.

“Our machine learning technique resolves that problem, and the methodology is broadly applicable where any imaging is taking place, such as medical applications, or the oil and gas industry, or chemical engineering.

“We have done preliminary super-resolution work with radiologists previously and we could surmise that by obtaining a higher resolution image from a larger field of view that it may be possible to diagnose diseases, such as tumour cells, earlier, when they are smaller.”

DualEDSR algorithm

Dr Wang says in the published study their super-resolution algorithm, known as DualEDSR, improves the field of view by around 100 times compared to the high-res image.

And he agrees that implementation in medical imaging is an exciting future development.

“If you look at what we are doing now and apply it to the medical field, then it would be very interesting to be able to image blood vessels and the flow of red blood cells through the capillary network in even more detail,” he says.

“These beyond-hardware imaging and modelling methods extend beyond fuel cell imaging to enable higher resolution imaging of larger fields of view than previously practical.”

One limitation to the modelling process as detailed in the study is the fact the larger-scale low-res image and the smaller-scale higher-res image need to be taken at the same location, by the same machine.

These are known as ‘Region of Interest’ scanners and are specialised pieces of equipment that may not currently be available at many facilities.

However, the team hopes that further research will allow deep learning techniques to produce similar results in future when presented with images that were not taken at the same location and potentially not even using exactly the same instrument or material.

Fast-fuelling PEMFCs

For now, the researchers are able to provide a detailed 3D model of the inside of a PEMFC in order for manufacturers to improve the management of the water produced and make the fuel cells more efficient.

During training and testing of DualEDSR, the algorithm achieved 97.3 per cent accuracy when producing high-res modelling from low-res imagery. It also produced a high-resolution model in just 1 hour, compared to the 1188 hours (the equivalent of 50 days non-stop) it would have taken to obtain high-res images of the whole section of the fuel cell using a micro-CT scanner.

“From our model we can quickly and precisely see where the water tends to accumulate and therefore, we can help to solve those problems in future designs,” says Dr Meyer.

“Within the industry it is known that there is a huge untapped performance improvement that could be made using these cells, just by improved water management, and that is estimated to be a 60 per cent increase overall.

“For the past 20 years, up until now, it has been very hard to have an accurate model of these fuel cells because of the complexity of both the materials, and the way gases and liquids are transported, as well as the electrochemical reactions taking place.

“Our cross-disciplinary team has enabled us to do just that, bringing so many different expertises to the table. That’s what research is about.”

More efficient PEMFCs could be an important element in providing clean and environmentally-friendly electricity in the future, given the fact they emit only water and heat. In addition, they are compact and lightweight, making them suitable for use in vehicles.

They can also be rapidly refuelled, as quickly as refuelling a car with petrol, giving them a key advantage over battery-powered EVs which can take many hours even with a rapid charger.

Source: University of New South Wales

Published on February 24, 2023

TAGGED: Environment, PEMFC, Proton Exchange Membrane Fuel Cell
admin February 24, 2023 February 24, 2023
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Uncategorized

Microorganism that causes rare but severe eye infections detected in NSW coastal areas

By Admin
Uncategorized

Scientists identify common cause of gastro in young children and adults over 50 years old

By admin
Uncategorized

AI reveals hidden traits about our planet’s flora to help save species

By admin
Uncategorized

Eye drops slow nearsightedness progression in kids, study finds

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?