By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Tiny magnetic discs offer remote brain stimulation without transgenes
    October 18, 2024
    World’s largest study of brain volume reveals genetic links to ADHD, Parkinson’s Disease 
    October 26, 2024
    Hoarding disorder: ‘sensory CBT’ treatment strategy shows promise
    October 18, 2024
    Latest News
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
    New chronic pain therapy retrains the brain to process emotions
    May 10, 2025
    Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments
    May 7, 2025
    A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!
    April 28, 2025
  • Environment
    EnvironmentShow More
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
    Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases, study finds
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Uncategorized > Looking Back in Time to Watch for a Different Kind of Black Hole
Uncategorized

Looking Back in Time to Watch for a Different Kind of Black Hole

admin
Last updated: 2018/09/27 at 8:39 PM
By admin
Share
7 Min Read
SHARE

Simulation of direct collapse black hole

Image from the direct collapse black hole simulation shows density (left) and temperature (right) of an early galaxy. Supernovae shock waves can be seen expanding from the center, disrupting and heating the galaxy. Credit: Georgia Tech

Black holes form when stars die, allowing the matter in them to collapse into an extremely dense object from which not even light can escape. Astronomers theorize that massive black holes could also form at the birth of a galaxy, but so far nobody has been able to look far enough back in time to observe the conditions creating these direct collapse black holes (DCBH).

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

The James Webb Space Telescope, scheduled for launch in 2021, might be able look far enough back into the early Universe to see a galaxy hosting a nascent massive black hole. Now, a simulation done by researchers at the Georgia Institute of Technology has suggested what astronomers should look for if they search the skies for a DCBH in its early stages.

The first-of-its-kind simulation, reported September 10 in the journal Nature Astronomy, suggests that direct formation of these black holes would be accompanied by specific kinds of intense radiation, including X-rays and ultraviolet emission that would shift to infrared by the time they reach the telescope. The black holes would also likely spawn massive metal-free stars, a finding that was unexpected.

The research was supported by NASA, the Los Alamos National Laboratory, the National Science Foundation, the Southern Regional Education Board and two Hubble theory grants.

“There are supermassive black holes at the center of many large galaxies, but we haven’t been able to observe the way they form or how they got that large,” said Kirk S. S. Barrow, the paper’s first author and a recent Ph.D. graduate of Georgia Tech’s School of Physics. “Scientists have theorized that these supermassive black holes could have formed at the birth of a galaxy, and we wanted to turn these theoretical predictions into observational predictions that could be seen by the James Webb Space Telescope.”

DCBH formation would be initiated by the collapse of a large cloud of gas during the early formation of a galaxy, said John H. Wise, a professor in Georgia Tech’s School of Physics and the Center for Relativistic Astrophysics. But before astronomers could hope to catch this formation, they would have to know what to look for in the spectra that the telescope could detect, which is principally infrared.

The formation of a black hole could require a million years or so, but to envision what that might have looked like, former postdoctoral researcher Aycin Aykutalp – now at Los Alamos National Laboratory – used the National Science Foundation-supported Stampede Supercomputer at the University of Texas at Austin to run a simulation focusing on the aftermath of DCBH formation. The simulation used physics first principles such as gravity, radiation and hydrodynamics.

“If the galaxy forms first and then the black hole forms in the center, that would have one type of signature,” said Wise, who is the Dunn Family Associate Professor in the School of Physics. “If the black hole formed first, would that have a different signature? We wanted to find out whether there would be any physical differences, and if so, whether that would translate into differences we could observe with the James Webb Space Telescope.”

The simulations provided information such as densities and temperatures, and Barrow converted that data into predictions for what might be observed through the telescope – the light likely to be observed and how it would affected by gas and dust it would have encountered on its long journey to Earth. “At the end, we had something that an observer could hopefully see,” Barrow said.

Black holes take about a million years to form, a blip in galactic time. In the DCBH simulation, that first step involves gas collapsing into a supermassive star as much as 100,000 times more massive than our sun. The star then undergoes gravitational instability and collapses into itself to form a massive black hole. Radiation from the black hole then triggers the formation of stars over period of about 500,000 years, the simulation suggested.

“The stars of this first generation are usually much more massive, so they live for a shorter period of time,” Wise said. “In the first five to six million years after their formation, they die and go supernova. That’s another one of the signatures that we report in this study.”

After the supernovae form, the black hole quiets down but creates a struggle between electromagnetic emissions – ultraviolet light and X-rays trying to escape – and the black hole’s own gravity. “These cycles go on for another 20 or 30 million years,” Wise said.

Black holes are relatively common in the universe, so the hope is that with enough snapshots, astronomers could catch one being born, and that could lead to a new understanding of how galaxies evolve over time.

Star formation around the DCBH was unexpected, but in hindsight, it makes sense, Barrow said. The ionization produced by the black holes would produce photochemical reactions able to trigger the formation of the stars. Metal-free stars tend to be larger than others because the absence of a metal such as iron prevents fragmentation. But because they are so large, these stars produce tremendous amounts of radiation and end their lives in supernovae, he said.

“This is one of the last great mysteries of the early universe,” Barrow said. “We hope this study provides a good step toward figuring out how these supermassive black holes formed at the birth of a galaxy.”

Source: Georgia Institute of Technology.

Published on 27th September 2018

admin September 27, 2018 September 27, 2018
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Uncategorized

Microorganism that causes rare but severe eye infections detected in NSW coastal areas

By Admin
Uncategorized

Scientists identify common cause of gastro in young children and adults over 50 years old

By admin
Uncategorized

AI reveals hidden traits about our planet’s flora to help save species

By admin
Uncategorized

Eye drops slow nearsightedness progression in kids, study finds

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?