By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
ScienceabodeScienceabode
  • Home
  • News & Perspective
    News & PerspectiveShow More
    Microorganism that causes rare but severe eye infections detected in NSW coastal areas
    By Admin
    Scientists identify common cause of gastro in young children and adults over 50 years old
    By admin
    AI reveals hidden traits about our planet’s flora to help save species
    By admin
    Eye drops slow nearsightedness progression in kids, study finds
    By admin
    Using AI to create better, more potent medicines
    By admin
  • Latest News
    Latest NewsShow More
    Researchers develop new robot medics for places doctors are unable to be
    By Admin
    Even thinking about marriage gets young people to straighten up
    By admin
    Study: People tend to locate the self in the brain or the heart – and it affects their judgments and decisions
    By admin
    UCLA patient is first to receive successful heart transplant after using experimental 50cc Total Artificial Heart
    By admin
    Via Dying Cells, UVA Finds Potential Way to Control Cholesterol Levels
    By admin
  • Health
    Health
    The World Health Organization defines health as “a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity.”…
    Show More
    Top News
    Tiny magnetic discs offer remote brain stimulation without transgenes
    October 18, 2024
    World’s largest study of brain volume reveals genetic links to ADHD, Parkinson’s Disease 
    October 26, 2024
    Hoarding disorder: ‘sensory CBT’ treatment strategy shows promise
    October 18, 2024
    Latest News
    How do therapy dogs help domestic abuse survivors receiving support services?
    May 10, 2025
    New chronic pain therapy retrains the brain to process emotions
    May 10, 2025
    Mind Blank? Here’s What Your Brain Is Really Doing During Those Empty Moments
    May 7, 2025
    A Common Diabetes Drug Might Be the Secret to Relieving Knee Pain Without Surgery!
    April 28, 2025
  • Environment
    EnvironmentShow More
    Arsenic exposure linked to faster onset of diabetes in south Texas population 
    By Admin
    Antarctica vulnerable to invasive species hitching rides on plastic and organic debris
    By Admin
    New substrate material for flexible electronics could help combat e-waste
    By Admin
    Bacteria ‘nanowires’ could help scientists develop green electronics
    By Admin
    Replacing plastics with alternatives is worse for greenhouse gas emissions in most cases, study finds
    By Admin
  • Infomation
    • Pricavy Policy
    • Terms of Service
  • Jobs
  • Application Submission
Notification Show More
Aa
ScienceabodeScienceabode
Aa
  • Home
  • Health
  • Anatomy
  • Jobs Portal
  • Application Submission
  • Categories
    • Health
    • Anatomy
    • Food & Diet
    • Beauty Lab
    • News & Perspective
    • Environment
  • More Foxiz
    • Blog Index
    • Sitemap
Follow US
Scienceabode > Blog > Uncategorized > New spheres trick, trap and terminate water contaminant
Uncategorized

New spheres trick, trap and terminate water contaminant

admin
Last updated: 2018/10/10 at 12:46 PM
By admin
Share
4 Min Read
SHARE

Rice University scientists have developed something akin to the Venus’ flytrap of particles for water remediation.

Micron-sized spheres created in the lab of Rice environmental engineer Pedro Alvarez are built to catch and destroy bisphenol A (BPA), a synthetic chemical used to make plastics.

The research is detailed in the American Chemical Society journal Environmental Science & Technology.

- Advertisement -
MedBanner_Skyscraper_160x600_03/2018

BPA is commonly used to coat the insides of food cans, bottle tops and water supply lines, and was once a component of baby bottles. While BPA that seeps into food and drink is considered safe in low doses, prolonged exposure is suspected of affecting the health of children and contributing to high blood pressure.

The good news is that reactive oxygen species (ROS) – in this case, hydroxyl radicals – are bad news for BPA. Inexpensive titanium dioxide releases ROS when triggered by ultraviolet light. But because oxidating molecules fade quickly, BPA has to be close enough to attack.

That’s where the trap comes in.

Close up, the spheres reveal themselves as flower-like collections of titanium dioxide petals. The supple petals provide plenty of surface area for the Rice researchers to anchor cyclodextrin molecules.

Cyclodextrin is a benign sugar-based molecule often used in food and drugs. It has a two-faced structure, with a hydrophobic (water-avoiding) cavity and a hydrophilic (water-attracting) outer surface. BPA is also hydrophobic and naturally attracted to the cavity. Once trapped, ROS produced by the spheres degrades BPA into harmless chemicals.

In the lab, the researchers determined that 200 milligrams of the spheres per liter of contaminated water degraded 90 percent of BPA in an hour, a process that would take more than twice as long with unenhanced titanium dioxide.

The work fits into technologies developed by the Rice-based and National Science Foundation-supported Center for Nanotechnology-Enabled Water Treatment because the spheres self-assemble from titanium dioxide nanosheets.

“Most of the processes reported in the literature involve nanoparticles,” said Rice graduate student and lead author Danning Zhang. “The size of the particles is less than 100 nanometers. Because of their very small size, they’re very difficult to recover from suspension in water.”

The Rice particles are much larger. Where a 100-nanometer particle is 1,000 times smaller than a human hair, the enhanced titanium dioxide is between 3 and 5 microns, only about 20 times smaller than the same hair. “That means we can use low-pressure microfiltration with a membrane to get these particles back for reuse,” Zhang said. “It saves a lot of energy.”

Because ROS also wears down cyclodextrin, the spheres begin to lose their trapping ability after about 400 hours of continued ultraviolet exposure, Zhang said. But once recovered, they can be easily recharged.

“This new material helps overcome two significant technological barriers for photocatalytic water treatment,” Alvarez said. “First, it enhances treatment efficiency by minimizing scavenging of ROS by non-target constituents in water. Here, the ROS are mainly used to destroy BPA.

“Second, it enables low-cost separation and reuse of the catalyst, contributing to lower treatment cost,” he said. “This is an example of how advanced materials can help convert academic hypes into feasible processes that enhance water security.”

Source: Rice University.

Published on 10th October 2018

admin October 10, 2018 October 10, 2018
Share This Article
Facebook Twitter Copy Link Print

Fast Four Quiz: Precision Medicine in Cancer

How much do you know about precision medicine in cancer? Test your knowledge with this quick quiz.
Get Started
Even in Winter, Life Persists in Arctic Seas

(USCGC Healy breaking through the Bering Sea waves. Credit: Chantelle Rose/NSF)   Despite…

A Biodiversity Discovery That Was Waiting in the Wings–Wasp Wings, That Is

Wing size differences between two Nasonia wasp species are the result of…

Entertainement

Coming soon

Your one-stop resource for medical news and education.

Your one-stop resource for medical news and education.
Sign Up for Free

You Might Also Like

Uncategorized

Microorganism that causes rare but severe eye infections detected in NSW coastal areas

By Admin
Uncategorized

Scientists identify common cause of gastro in young children and adults over 50 years old

By admin
Uncategorized

AI reveals hidden traits about our planet’s flora to help save species

By admin
Uncategorized

Eye drops slow nearsightedness progression in kids, study finds

By admin
Facebook Twitter Youtube Instagram
Company
  • Privacy Policy
  • Editorial Policy
  • Accessibility Statement
  • Contact US
  • Feedback
  • Advertisement
More Info
  • Newsletter
  • Beauty Lab
  • News & Perspective
  • Food & Diet
  • Health
  • Environment
  • Anatomy

Sign Up For Free

Subscribe to our newsletter and don't miss out on our programs, webinars and trainings.

Copyright © 2023 ScienceAbode. All Rights Reserved. Designed and Developed by Spirelab Solutions (Pvt) Ltd

Welcome Back!

Sign in to your account

Lost your password?